Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMJ Open ; 12(5): e054869, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1932725

ABSTRACT

OBJECTIVES: To assess the applicability of risk factors for severe COVID-19 defined in the general population for patients on haemodialysis. SETTING: A retrospective cross-sectional study performed across thirty four haemodialysis units in midlands of the UK. PARTICIPANTS: All 274 patients on maintenance haemodialysis who tested positive for SARS-CoV-2 on PCR testing between March and August 2020, in participating haemodialysis centres. EXPOSURE: The utility of obesity, diabetes status, ethnicity, Charlson Comorbidity Index (CCI) and socioeconomic deprivation scores were investigated as risk factors for severe COVID-19. MAIN OUTCOMES AND MEASURES: Severe COVID-19, defined as requiring supplemental oxygen or respiratory support, or a C reactive protein of ≥75 mg/dL (RECOVERY trial definitions), and its association with obesity, diabetes status, ethnicity, CCI, and socioeconomic deprivation. RESULTS: 63.5% (174/274 patients) developed severe disease. Socioeconomic deprivation associated with severity, being most pronounced between the most and least deprived quartiles (OR 2.81, 95% CI 1.22 to 6.47, p=0.015), after adjusting for age, sex and ethnicity. There was no association between obesity, diabetes status, ethnicity or CCI with COVID-19 severity. We found no evidence of temporal evolution of cases (p=0.209) or clustering that would impact our findings. CONCLUSION: The incidence of severe COVID-19 is high among patients on haemodialysis; this cohort should be considered high risk. There was strong evidence of an association between socioeconomic deprivation and COVID-19 severity. Other risk factors that apply to the general population may not apply to this cohort.


Subject(s)
COVID-19 , Diabetes Mellitus , COVID-19/epidemiology , Cross-Sectional Studies , Diabetes Mellitus/epidemiology , Humans , Obesity/epidemiology , Renal Dialysis , Retrospective Studies , Risk Factors , SARS-CoV-2 , United Kingdom/epidemiology
2.
BMJ Open ; 12(6): e060922, 2022 06 08.
Article in English | MEDLINE | ID: covidwho-1891841

ABSTRACT

INTRODUCTION: Use of home dialysis by centres in the UK varies considerably and is decreasing despite attempts to encourage greater use. Knowing what drives this unwarranted variation requires in-depth understanding of centre cultural and organisational factors and how these relate to quantifiable centre performance, accounting for competing treatment options. This knowledge will be used to identify components of a practical and feasible intervention bundle ensuring this is realistic and cost-effective. METHODS AND ANALYSIS: Underpinned by the non-adoption, abandonment, scale-up, spread and sustainability framework, our research will use an exploratory sequential mixed-methods approach. Insights from multisited focused team ethnographic and qualitative research at four case study sites will inform development of a national survey of 52 centres. Survey results, linked to patient-level data from the UK Renal Registry, will populate a causal graph describing patient and centre-level factors, leading to uptake of home dialysis and multistate models incorporating patient-level treatment modality history and mortality. This will inform a contemporary economic evaluation of modality cost-effectiveness that will quantify how modification of factors facilitating home dialysis, identified from the ethnography and survey, might yield the greatest improvements in costs, quality of life and numbers on home therapies. Selected from these factors, using the capability, opportunity and motivation for behaviour change framework (COM-B) for intervention design, the optimal intervention bundle will be developed through workshops with patients and healthcare professionals to ensure acceptability and feasibility. Patient and public engagement and involvement is embedded throughout the project. ETHICS AND DISSEMINATION: Ethics approval has been granted by the Health Research Authority reference 20-WA-0249. The intervention bundle will comprise components for all stake holder groups: commissioners, provider units, recipients of dialysis, their caregivers and families. To reache all these groups, a variety of knowledge exchange methods will be used: short guides, infographics, case studies, National Institute for Health and Care Excellence guidelines, patient conferences, 'Getting it Right First Time' initiative, Clinical Reference Group (dialysis).


Subject(s)
Hemodialysis, Home , Renal Dialysis , Caregivers , Humans , Qualitative Research , Quality of Life , Renal Dialysis/methods
3.
Perit Dial Int ; 41(4): 352-372, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1085206

ABSTRACT

GUIDELINE 1: A pathophysiological taxonomy: A pathophysiological classification of membrane dysfunction, which provides mechanistic links to functional characteristics, should be used when prescribing individualized dialysis or when planning modality transfer (e.g. to automated peritoneal dialysis (PD) or haemodialysis) in the context of shared and informed decision-making with the person on PD, taking individual circumstances and treatment goals into account. (practice point). GUIDELINE 2A: Identification of fast peritoneal solute transfer rate (PSTR): It is recommended that the PSTR is determined from a 4-h peritoneal equilibration test (PET), using either 2.5%/2.27% or 4.25%/3.86% dextrose/glucose concentration and creatinine as the index solute. (practice point) This should be done early in the course dialysis treatment (between 6 weeks and 12 weeks) (GRADE 1A) and subsequently when clinically indicated. (practice point). GUIDELINE 2B: Clinical implications and mitigation of fast solute transfer: A faster PSTR is associated with lower survival on PD. (GRADE 1A) This risk is in part due to the lower ultrafiltration (UF) and increased net fluid reabsorption that occurs when the PSTR is above the average value. The resulting lower net UF can be avoided by shortening glucose-based exchanges, using a polyglucose solution (icodextrin), and/or prescribing higher glucose concentrations. (GRADE 1A) Compared to glucose, use of icodextrin can translate into improved fluid status and fewer episodes of fluid overload. (GRADE 1A) Use of automated PD and icodextrin may mitigate the mortality risk associated with fast PSTR. (practice point). GUIDELINE 3: Recognizing low UF capacity: This is easy to measure and a valuable screening test. Insufficient UF should be suspected when either (a) the net UF from a 4-h PET is <400 ml (3.86% glucose/4.25% dextrose) or <100 ml (2.27% glucose /2.5% dextrose), (GRADE 1B) and/or (b) the daily UF is insufficient to maintain adequate fluid status. (practice point) Besides membrane dysfunction, low UF capacity can also result from mechanical problems, leaks or increased fluid absorption across the peritoneal membrane not explained by fast PSTR. GUIDELINE 4A: Diagnosing intrinsic membrane dysfunction (manifesting as low osmotic conductance to glucose) as a cause of UF insufficiency: When insufficient UF is suspected, the 4-h PET should be supplemented by measurement of the sodium dip at 1 h using a 3.86% glucose/4.25% dextrose exchange for diagnostic purposes. A sodium dip ≤5 mmol/L and/or a sodium sieving ratio ≤0.03 at 1 h indicates UF insufficiency. (GRADE 2B). GUIDELINE 4B: Clinical implications of intrinsic membrane dysfunction (de novo or acquired): in the absence of residual kidney function, this is likely to necessitate the use of hypertonic glucose exchanges and possible transfer to haemodialysis. Acquired membrane injury, especially in the context of prolonged time on treatment, should prompt discussions about the risk of encapsulating peritoneal sclerosis. (practice point). GUIDELINE 5: Additional membrane function tests: measures of peritoneal protein loss, intraperitoneal pressure and more complex tests that estimate osmotic conductance and 'lymphatic' reabsorption are not recommended for routine clinical practice but remain valuable research methods. (practice point). GUIDELINE 6: Socioeconomic considerations: When resource constraints prevent the use of routine tests, consideration of membrane function should still be part of the clinical management and may be inferred from the daily UF in response to the prescription. (practice point).


Subject(s)
Peritoneal Dialysis , Adult , Dialysis Solutions , Glucans , Glucose , Humans , Icodextrin , Peritoneum , Sodium , Ultrafiltration
SELECTION OF CITATIONS
SEARCH DETAIL